

CENTRE DE RECHERCHE INFORMATIQUE DE MONTRÉAL

Utilisation du package rEMM pour la reconnaissance de motifs spatio-temporels

PRÉSENTÉ À : R à Quebec PAR : Mohamed Dahmane

DATE : 15/05/2019

PRINCIPAL PARTENAIRE FINANCIER

Markov Chain vs Extented Markov Models (EMM)

Motivation

- Markov Chains are suitable to model complex systems
- **Spatio-temporal** event prediction: time may be difficult to modelize an update with MC structures
- Clustering alone neglects the temporal proximity of spatial data
- The EMM adds the temporal component by **superimposing a dynamically** adapting Markov Chain.
- The Extended Markov Models (EMM) are particularly well suited to model spatiotemporal data such as: Network traffic, environmental data, weather data etc

(a_{11})	a_{12}	•••	a_{1K}
a_{21}	a_{22}	•••	a_{2K}
:	÷	۰.	÷
a_{K1}	a_{K2}		a_{KK}

Extended Markov Models

EMM structure

• Is an evolving MC => EMM(t) = MC

Manipulations

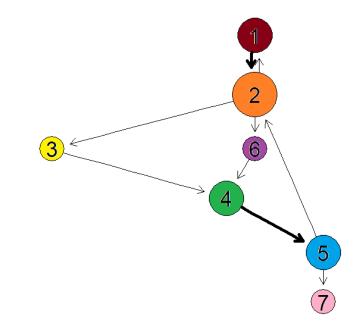
- A data point can be added to an existing cluster,
- delete/create a new cluster,
- merge/split clusters,
- **fading** and **pruning** the cluster structure: Fading is achieved by reducing the weight of old observations

$$w_t = 2^{-\lambda t}$$

Example EMM

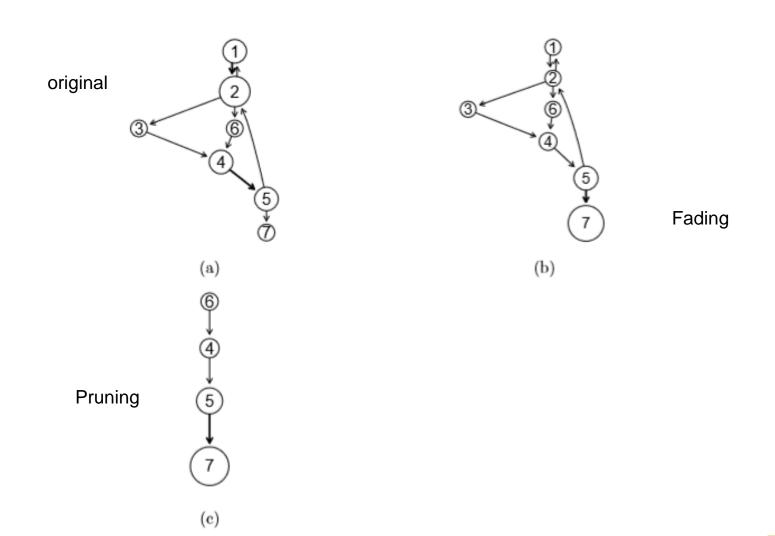
		MTraff DC_1 L 20 20 40 15 40 5 0 20 45 15 5 10		-oc_3 100 50 75 30 25 40 55 30 15 40 55 10	LOC_4 30 20 30 10 35 2 11 18 40 10 4	Loc_5 25 10 30 10 35 10 1 20 20 10 10	Loc_6 4 10 20 10 40 5 3 15 20 10 15 15	Loc_7 10 25 15 9 4 5 10 15 14 0 10	
A → B →	> em	m <- E		reshol	d=0.2			Jaccard	b) eJaccard = $\frac{x * y}{x^2 + y^2 - x * y}$
_	> si [1] > fi	ze(emm 7 nd_clu	n) usters	(emm.	tabPlu	us)	"-" "	6" "4" '	
			_cente			+ 2	2	0 4	5 /
						_oc_5 I	00.6	LOC 7	
	1	20	50	100	30	25	4	10	
	2	20	80	50	20	10	10	10	
	3	40	15	25	10	35	40	9	
	4	5	5	40	35	10	5	4	
	5	0	35	55	2	1	3	5	
	6 7	45 10	40 30	15 10	18 4	20 15	20 15	15 10	
	>	10	50	10	4	10	13	10	

EMM structure

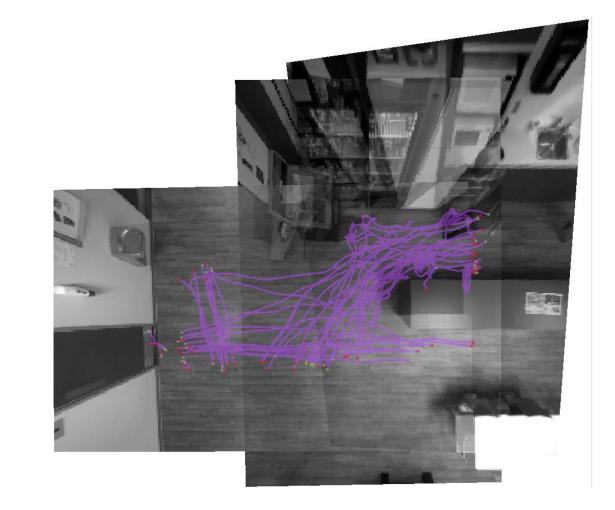


> EMMTraffic

	Loc_1	Loc_2	Loc_3	Loc_4	Loc_5	Loc_6	Loc_7	
1	20	50	100	30	25	4	10	
2	20	80	50	20	10	10	10	
3	40	30	75	20	30	20	25	
4	15	60	30	30	10	10	15	
5	40	15	25	10	35	40	9	
6	5	5	40	35	10	5	4	
7	0	35	55	2	1	3	5	
8	20	60	30	11	20	15	10	
9	45	40	15	18	20	20	15	
10	15	20	40	40	10	10	14	
11	5	45	55	10	10	15	0	
12	10	30	10	4	15	15	10	


> cluster_centers(emm)

	Loc_1	Loc_2	LOC_3	Loc_4	Loc_5	Loc_6	Loc_7
1	20	50	100	30	25	4	10
2	20	80	50	20	10	10	10
3	40	15	25	10	35	40	9
4	5	5	40	35	10	5	4
5	0	35	55	2	1	3	5
6	45	40	15	18	20	20	15
7	10	30	10	4	15	15	10



Analyze of a stream of tracking data

Data :

• (x,y,t)

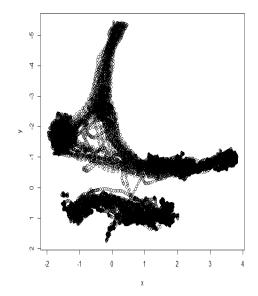
Analyze of a stream of tracking data

Data

• (x,y,t)

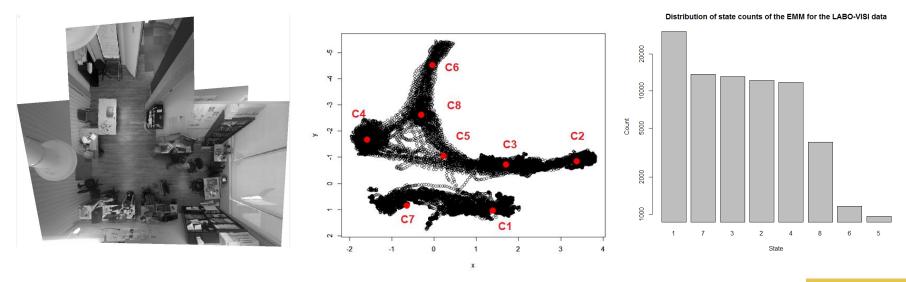
⟨¬¬¬⟩ ITer								
*	id [‡]	x \Rightarrow	y ‡	date_time	row_name	h [‡]		
1	0	1.875499	0.8730250	2017-03-23 14:23:41	1458	1.051		
2	0	1.875360	0.8843182	2017-03-23 14:23:42	1464	1.050		
3	0	1.875360	0.8843182	2017-03-23 14:23:42	1470	1.050		

85651	81	1.30824840	-0.7371868	2017-03-23 14:59:20	87080	1.774
85652	81	1.31512890	-0.7487430	2017-03-23 14:59:20	87084	1.764
85653	81	1.31768570	-0.7473654	2017-03-23 14:59:20	87088	1.769

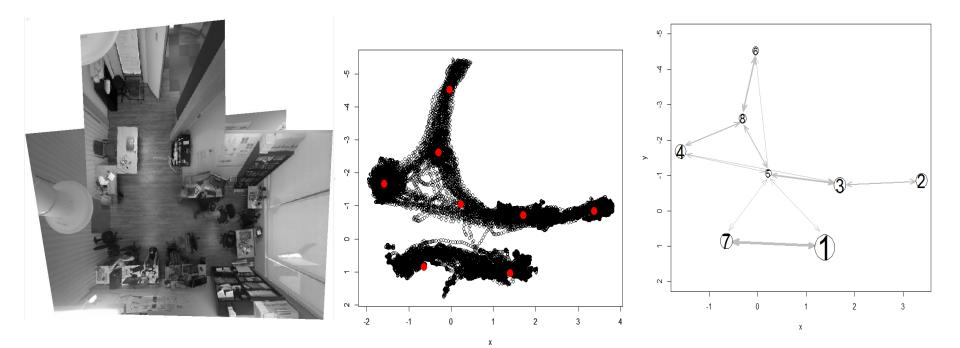


Analyze of a stream of tracking data

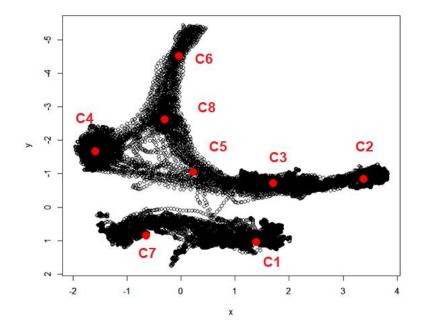
Summary of (x, y) data stream

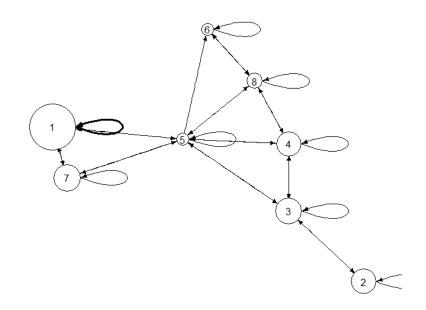


Stat.	X	У	
Min.	-1.9630	-5.4294	
1 st Qu.	-0.3604	-0.9316	
Median	1.1794	0.3171	
Mean	0.8857	-0.1562	
3 rd Qu.	1.7244	1.0583	
Max.	3.8231	1.7534	

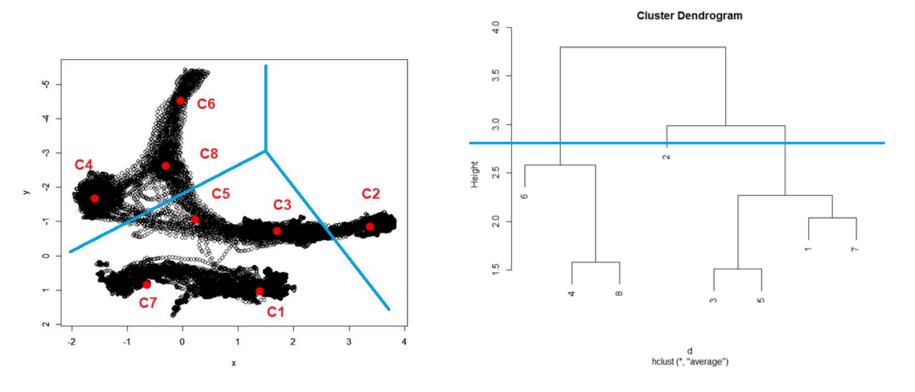

Analyze of a stream of tracking data : Clustering

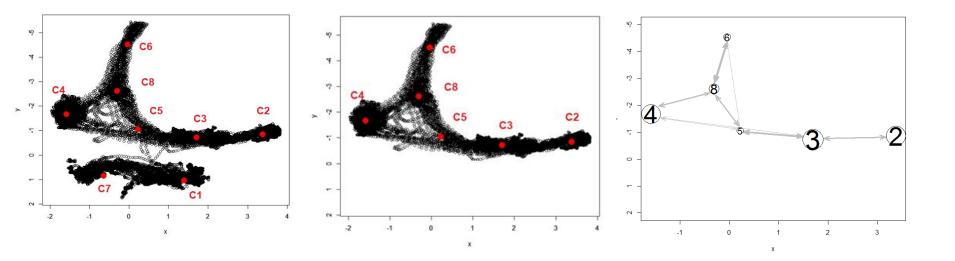
- EMM Clustering gives :
- 8 clusters
- Resulting states :
- State 6 and state 5 have integrate a few observations (transit states)
- State 8 can be considered as a waiting sate.
- Clusters 1 to 4 and 7 represent most observations (engagement state)


Analyze of a stream of tracking data : State graph


- State graph:
- o each state radius is proportional to the sate counts

Analyze of a stream of tracking data : Transition graph

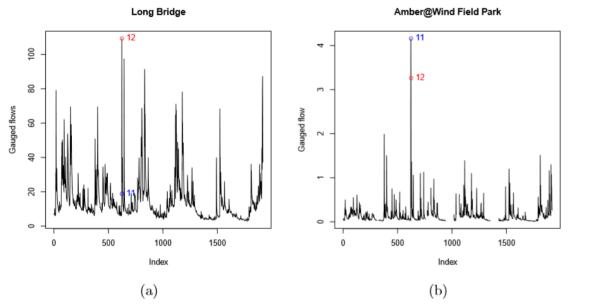

- Transition graph :
- o each transition is proportional to the transition probability


Analyze of a stream of tracking data : Reclustering

- Reclustering
- We can also re-cluster the states

Analyze of a stream of tracking data : Graph pruning

- Graph pruning :
- Removing states 1 and 7



EMM applications

Application

- 6.1. Analyzing river flow data
- 6.2. Genetic sequence analysis

Reference

- https://cran.r-project.org/web/packages/rEMM/vignettes/rEMM.pdf
- https://cran.r-project.org/web/packages/rEMM/rEMM.pdf

Mohamed Dahmane, Ph. D.

Chercheur

dahmanmo@crim.ca www.crim.ca

Tous droits réservés © 2018 CRIM – Centre de recherche informatique de Montréal 101 - 405, avenue Ogilvy, Montréal (Québec) H3N 1M3 514 840-1234 / 1 877 840-2746

