Modèles mixtes linéaires à classes latentes : Package LCMM

Chaymae YOUSFI^{1,4} Alexandre BUREAU^{2,4} Michel MAZIADE^{3,4}

¹Département de mathématiques et de statistique, Université Laval, ²Département de médecine sociale et préventive, Université Laval,

15 Mai 2019

³Département de psychiatrie et neurosciences, Université Laval, ⁴Centre de Recherche CERVO, Québec, Canada

Plan de la présentation

- Introduction
- 2 Fonctions d'ajustement principales
 - Cas univarié
 - Fondement théorique et implémentation sur R
 - Application
 - Cas multivarié
- Fonctions post-ajustement
- A Références

Cadre général du modèle

• Usage des Modèles Mixtes Linéaires (LMM) : études longitudinales.

- La variable réponse longitudinale est continue.
- Les effets aléatoires et les erreurs sont gaussiennes.
- La linéarité des relations avec la variable réponse.
- L'homogénéité de la population.
- Les données manquantes sont manquantes aléatoirement .

- La variable réponse longitudinale est continue.
- Les effets aléatoires et les erreurs sont gaussiennes.
- La linéarité des relations avec la variable réponse.
- L'homogénéité de la population.
- Les données manquantes sont manquantes aléatoirement .

- La variable réponse longitudinale est continue.
- Les effets aléatoires et les erreurs sont gaussiennes.
- La linéarité des relations avec la variable réponse.
- L'homogénéité de la population.
- Les données manquantes sont manquantes aléatoirement .

- La variable réponse longitudinale est continue.
- Les effets aléatoires et les erreurs sont gaussiennes.
- La linéarité des relations avec la variable réponse.
- L'homogénéité de la population.
- Les données manquantes sont manquantes aléatoirement .

- La variable réponse longitudinale est continue.
- Les effets aléatoires et les erreurs sont gaussiennes.
- La linéarité des relations avec la variable réponse.
- L'homogénéité de la population.
- Les données manquantes sont manquantes aléatoirement .

- Proust-Lima
- https://cran.r-project.org/package=lcmm
- modèles mixtes linéaires,
- modèles mixtes linéaires à classes latentes,

- Proust-Lima
- https://cran.r-project.org/package=lcmm
- modèles mixtes linéaires,
- modèles mixtes linéaires à classes latentes,

- Proust-Lima
- https://cran.r-project.org/package=lcmm
- modèles mixtes linéaires,
- modèles mixtes linéaires à classes latentes,

- Proust-Lima
- https://cran.r-project.org/package=lcmm
- modèles mixtes linéaires,
- modèles mixtes linéaires à classes latentes,

- Proust-Lima
- https://cran.r-project.org/package=lcmm
- modèles mixtes linéaires,
- modèles mixtes linéaires à classes latentes,

- N sujets et G classes latentes.
- On considère une variable latente discrète, c_i avec (i, i=1,...,
 N), modélisant l'appartenance à la classe latente :

$$\pi_{ig} = P(c_i = g/X_{1i}) = \frac{e^{\xi_{0g} + X_{1i}^T * \xi_{1g}}}{\sum_{l=1}^G e^{\xi_{0l} + X_{1i}^T * \xi_{1l}}}$$

- N sujets et G classes latentes.
- On considère une variable latente discrète, c_i avec (i, i=1,...,
 N), modélisant l'appartenance à la classe latente :

$$\pi_{ig} = P(c_i = g/X_{1i}) = \frac{e^{\xi_{0g} + X_{1i}^T * \xi_{1g}}}{\sum_{l=1}^G e^{\xi_{0l} + X_{1i}^T * \xi_{1l}}}$$

- N sujets et G classes latentes.
- On considère une variable latente discrète, c_i avec (i, i=1,...,
 N), modélisant l'appartenance à la classe latente :

$$\pi_{ig} = P(c_i = g/X_{1i}) = \frac{e^{\xi_{0g} + X_{1i}^I * \xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X_{1i}^T * \xi_{1}}}$$

- N sujets et G classes latentes.
- On considère une variable latente discrète, c_i avec (i, i=1,...,
 N), modélisant l'appartenance à la classe latente :

$$\pi_{ig} = P(c_i = g/X_{1i}) = \frac{e^{\xi_{0g} + X_{1i}^T * \xi_{1g}}}{\sum_{l=1}^{G} e^{\xi_{0l} + X_{1i}^T * \xi_{1l}}}$$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^{T} * u_{ig} + X_{2ij}^{T} * \beta + X_{3ij}^{T} * \gamma_{g} + \epsilon_{ij}$$

tel que

- Z_{ij} , X_{2ij} et X_{3ij} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ij}(0,\sigma^2)$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g + \epsilon_{ij}$$

tel que

- Z_{ii} , X_{2ii} et X_{3ii} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ij}(0,\sigma^2)$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^{T} * u_{ig} + X_{2ij}^{T} * \beta + X_{3ij}^{T} * \gamma_{g} + \epsilon_{ij}$$

- Z_{ii} , X_{2ii} et X_{3ii} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ij}(0,\sigma^2)$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^{T} * u_{ig} + X_{2ij}^{T} * \beta + X_{3ij}^{T} * \gamma_{g} + \epsilon_{ij}$$

- Z_{ij} , X_{2ij} et X_{3ij} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ij}(0,\sigma^2)$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g + \epsilon_{ij}$$

- Z_{ii} , X_{2ii} et X_{3ii} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ij}(0,\sigma^2)$

Les mesures répétées du marqueur longitudinal $Y_{ij}(j,j=1,...,n_i)$ sont :

$$Y_{ij}/c_{i=g} = Z_{ij}^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g + \epsilon_{ij}$$

- Z_{ij} , X_{2ij} et X_{3ij} sont les vecteurs des covariables
- $u_{ig}(\mu_j, \omega_g^2 B)$
- $\epsilon_{ii}(0,\sigma^2)$

Fonctions post-ajustement

Fonction hlme : Implémentation sur R

```
hlme(fixed=Y\sim Time+X<sub>2</sub> + X<sub>3</sub>+Time :X<sub>2</sub>+Time :X<sub>3</sub>+X<sub>2</sub> : X_3,random=\sim Z, subject="Identifiant",mixture=\sim Time+X<sub>3</sub>, classmb=\simX<sub>1</sub>,ng=G, data=ourdata)
```

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/c_{i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

ΟÙ

$$H(,\eta)$$
=linéaire, Bêta CDF, etc

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/c_{i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

ΟÙ

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/_{c_i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

ΟÙ

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/c_{i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

ΟÙ

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/c_{i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

ΟÙ

- Soit la classe latente g, g(1,...,G).
- Le processus latent est :

$$\Delta_i(t)/c_{i=g} = Z_i^T * u_{ig} + X_{2ij}^T * \beta + X_{3ij}^T * \gamma_g$$

• Relation entre la variable réponse et le processus latent :

$$H(Y_i(t)/c_{i=g},\eta) = \Delta_i(t)/c_{i=g} + \epsilon_i(t)$$

où:

Fonction lcmm : Implémentation sur R

```
\label{lcmm} \begin{split} \mathsf{lcmm}(\mathsf{fixed} = & Y \sim \mathit{Time} + X1 + \mathit{Time} : X1, \mathit{random} = \sim \mathit{Time}, \\ \mathsf{subject} = & \mathsf{"Identifiant"}, \mathsf{mixture} = \sim \mathit{Time}, \\ \mathsf{classmb} = & \sim & X_2 + X_3, \mathsf{ng} = \mathsf{G}, \\ \mathsf{data} = & \mathit{ourdata}) \end{split}
```

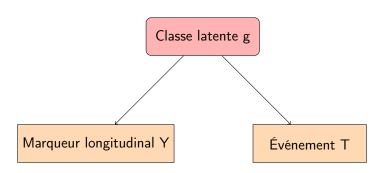


Figure – Modélisation conjointe d'un temps d'événement et d'un marqueur longitudinal

Fonction jointlcmm : Implémentation sur R

```
\label{eq:continuous_subject} \begin{split} \text{jointlcmm(fixed=Y} \sim \textit{Time} + \textit{X}1 + \textit{Time} : \textit{X}1, \textit{random} = \sim \textit{Time}, \\ \text{subject="Identifiant",mixture=} \sim \textit{Time}, \\ \text{classmb=} \sim & \textit{X}_2 + \textit{X}_3, \text{ng=G,data=} \textit{ourdata}, \\ \text{survival=Surv(survie,evenement)} \sim & \textit{X}_1 + \text{mixture}(\textit{X}_4), \\ \text{hazard='Weibull-Specific')} \end{split}
```

Application : Présentation des données

Objectif:

On cherche à stratifier les 67 sujets de notre étude en deux sous-populations selon le risque de développer des troubles psychiatriques.

- N=67 sujets et G =2 classes latentes,
- Les covariables : le score polygénique SZ, la variable sexe, la variable trauma.

Application : Présentation des données

- Objectif:

 On cherche à stratifier les 67 sujets de notre étude en deux sous-populations selon le risque de développer des troubles psychiatriques.
- N=67 sujets et G =2 classes latentes,
- Les covariables : le score polygénique SZ, la variable sexe, la variable trauma.

Application : Présentation des données

- Objectif:

 On cherche à stratifier les 67 sujets de notre étude en deux sous-populations selon le risque de développer des troubles psychiatriques.
- N=67 sujets et G =2 classes latentes,
- Les covariables : le score polygénique SZ, la variable sexe, la variable trauma.

Application : Présentation des données

- Objectif:

 On cherche à stratifier les 67 sujets de notre étude en deux sous-populations selon le risque de développer des troubles psychiatriques.
- N=67 sujets et G =2 classes latentes,
- Les covariables : le score polygénique SZ, la variable sexe, la variable trauma.

Fonctions post-aiustement

Fonction hlme

```
Maximum Likelihood Estimates:
Fixed effects in the class-membership model:
(the class of reference is the last class)
                       coef Se Wald p-value
intercept class1 4.68327 3.26358 1.435 0.15128
score_sz_imp_10 class1 0.30781 0.16502 1.865 0.06214
Fixed effects in the longitudinal model:
                           Se Wald p-value
                  coef
intercept class1 0.56644 1.32236 0.428 0.66839
intercept class2 1.01795 0.71059 1.433 0.15199
t class1
               -0.01197 0.05062 -0.236 0.81306
t. class2
              0.03919 0.01591 2.463 0.01379
Variance-covariance matrix of the random-effects:
        intercept
intercept 1.75459
         -0.05518 0.00189
t
```

Fonction jointlemm : problème de convergence

```
Iteration process:
     Maximum number of iteration reached without convergence
     Number of iterations: 100
     Convergence criteria: parameters = 0
                          : likelihood= 1e+09
                          : second derivatives = 1
Goodness-of-fit statistics:
     maximum log-likelihood: -215.73
     ATC: 463.46
     BIC: 498.73
Maximum Likelihood Estimates:
Fixed effects in the class-membership model:
(the class of reference is the last class)
                     coef Se Wald p-value
intercept class1
                  0.00000
sexe_bin class1
                  0.00000
```

- Les paramètres de convergence : convB,convL, convG (par défaut 10⁻⁴),
- Le nombre d'itérations : maxiter (par défaut 100),
- Le vecteur des valeurs initiales des paramètres : B.

Fonction jointlcmm : résolution des problèmes de convergence

- Les paramètres de convergence : convB,convL, convG (par défaut 10⁻⁴),
- Le nombre d'itérations : maxiter (par défaut 100),
- Le vecteur des valeurs initiales des paramètres : B.

Fonction jointlcmm : résolution des problèmes de convergence

- Les paramètres de convergence : convB,convL, convG (par défaut 10⁻⁴),
- Le nombre d'itérations : maxiter (par défaut 100),
- Le vecteur des valeurs initiales des paramètres : B.

Fonction jointlcmm : résolution des problèmes de convergence

- Les paramètres de convergence : convB,convL, convG (par défaut 10⁻⁴),
- Le nombre d'itérations : maxiter (par défaut 100),
- Le vecteur des valeurs initiales des paramètres : B.

Fonction jointlemm : Résolution du problème de convergence

```
Maximum Likelihood Estimates:
```

```
Fixed effects in the class-membership model: (the class of reference is the last class)
```

Parameters in the proportional hazard model:

```
coef Se Wald p-value
event1 +/-sqrt(Weibull1) class 1 0.13858 0.02354 5.886 0.00000
event1 +/-sqrt(Weibull2) class 1 1.81689 0.41934 4.333 0.00001
event1 +/-sqrt(Weibull1) class 2 0.14946 0.01661 9.000 0.00000
event1 +/-sqrt(Weibull2) class 2 2.12150 0.45736 4.639 0.00000
```

Fonction jointlemm : Suite de la résolution du problème de convergence

Fixed effects in the longitudinal model:

```
Se Wald p-value
                         coef
intercept class1 -3.55825 1.00411 -3.544 0.00039
intercept class2
                     1.72433 0.98757 1.746 0.08081
t class1
                      0.01080 0.02816 0.384 0.70129
t class2
                      0.05093 0.02513 2.027 0.04269
score_sz_imp_10 class1 -0.14427 0.04039 -3.572 0.00035
score sz imp 10 class2 0.09065 0.03170 2.860 0.00424
```

```
Variance-covariance matrix of the random-effects:
         intercept t
intercept 1.55586
t
          -0.05637 0.00216
```

coef Se Residual standard error 0.71775 0.08503

multlcmm et mpjlcmm

- multlcmm
- mpjlcmm
 https://github.com/CecileProust-Lima/lcmm/tree/mpj

multlcmm et mpjlcmm

- multlcmm
- mpjlcmm

https://github.com/CecileProust-Lima/lcmm/tree/mpj

multlcmm et mpjlcmm

- multlcmm
- mpjlcmm

https://github.com/CecileProust-Lima/lcmm/tree/mpj

La classification aposteriori et les probabilités d'appartenance aux classes latentes

La fonction pprob permet d'avoir :

- La classification aposteriori selon les données longitudinales et le temps d'événement,
- Les probabilités d'appartenance individuelle à chaque classe latente.

La classification aposteriori et les probabilités d'appartenance aux classes latentes

La fonction pprob permet d'avoir :

- La classification aposteriori selon les données longitudinales et le temps d'événement,
- Les probabilités d'appartenance individuelle à chaque classe

La classification aposteriori et les probabilités d'appartenance aux classes latentes

La fonction pprob permet d'avoir :

- La classification aposteriori selon les données longitudinales et le temps d'événement,
- Les probabilités d'appartenance individuelle à chaque classe latente.

Exemple

	${\tt identifiant}$	class	probYT1	probYT2
1	2962	1	1.000000e+00	8.699235e-25
2	2967	1	9.928730e-01	7.126986e-03
3	2968	2	5.726906e-12	1.000000e+00
4	2969	2	1.641901e-11	1.000000e+00
5	2970	1	1.000000e+00	1.812887e-12
6	2973	1	1.000000e+00	1.532902e-14
7	2975	2	3.761364e-06	9.999962e-01
8	2978	1	9.981270e-01	1.873018e-03
9	2990	2	2.644583e-01	7.355417e-01
10	4703	2	4.793673e-12	1.000000e+00
11	4705	1	1.000000e+00	6.279319e-14
12	4707	1	9.969627e-01	3.037259e-03
13	4709	1	1.000000e+00	9.691614e-09
14	4710	1	1.000000e+00	8.897081e-30

Risque cumulatif individuel à un certain t

• Soit un sujet donnée i, i(=1,...,N),

On peut calculer le risque cumulatif pour le sujet i à un certain âge donné t :

$$F_i(t/covariables) = \sum_{l=1}^{G} proba(c_i = l) * G(t/l)$$

Risque cumulatif individuel à un certain t

 Soit un sujet donnée i, i(=1,...,N),
 On peut calculer le risque cumulatif pour le sujet i à un certain âge donné t :

$$F_i(t/covariables) = \sum_{l=1}^{G} proba(c_i = l) * G(t/l)$$

Risque cumulatif individuel à un certain t

 Soit un sujet donnée i, i(=1,...,N),
 On peut calculer le risque cumulatif pour le sujet i à un certain âge donné t :

$$F_i(t/covariables) = \sum_{l=1}^{G} proba(c_i = l) * G(t/l)$$

Exemple

 On choisit t=36 ans, calculons le risque cumulatif de développer la maladie à cet âge pour un échantillon de nos sujets étudiés :

	identifiant	probabilite aposteriori a 36	classe
1	2962	4.635042e-09	1
2	2967	5.630017e-03	1
3	2968	7.899570e-01	2
4	2969	7.899570e-01	2
5	2970	4.636474e-09	1
6	2973	4.635054e-09	1
7	2975	7.899541e-01	2
8	2978	1.479609e-03	1
9	2990	5.810463e-01	2
10	4703	7.899570e-01	2
11	4705	4.635091e-09	1
12	4707	2.399308e-03	1
13	4709	1.229100e-08	1
14	4710	4.635042e-09	1

Références

- Joint modelling of multivariate longitudinal outcomes and a time-to-event: a nonlinear latent class approach
 Cécile Proust-Lima, Pierre Joly, Jean-François Dartigues,
 Hélène Jacqmin-Gadda
- Joint latent class models for longitudinal and time-to-event data: A review
 Cécile Proust-Lima, Mbéry Séne, Jeremy MG Taylor and Hélène Jacqmin-Gadda
- https://cran.r-project.org/web/packages/lcmm/lcmm.pdf
- https://arxiv.org/pdf/1503.00890.pdf