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MOTIVATION AND EXAMPLES 
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NUMERICAL STANDARD ERROR 

• NSE is the standard deviation of a simulation result, if the simulation 

experiment were to be repeated many times.

• Consider the expectation of a scalar function E(𝑔 𝑿 ) where 𝑔(𝑿) is 

estimated by generating pseudo-random draw 𝑥𝑖 ( 𝑖 = 1,2, … , 𝑛).

• The adequate estimator of the mean would be:

 𝜇 =  

𝑖=1

𝑛

𝑔(𝑥𝑖)/𝑛

• If the 𝑥𝑖 ( 𝑖 = 1,2, … , 𝑛) are 𝑖. 𝑖. 𝑑., the NSE of  𝜇 would simply be the 

standard deviation of 𝑔(𝑿) divided by √𝑛.
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NUMERICAL STANDARD ERROR 

• Problems arise when the 𝑥𝑖 are not 𝒊. 𝒊. 𝒅.

• Many time-series or simulation method (such as Markov chain Monte 

Carlo) exhibit high autocorrelation.

• As such, the naive method would overstate the precision of the 

estimate (that is, understate the NSE).

• One could possibly repeat the simulation experiment several time 

and compute the standard deviation of  𝜇.

• This however might be impossible or prohibitive because of 

computation time.
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EXAMPLE AR(1) PROCESS

• Suppose you have a AR(1) process:

𝑦𝑡 = 𝛼 + 𝜌𝑦𝑡−1 + 𝜖𝑡 𝜖𝑡 ~ 𝑁(0,1)

• You want to estimate 𝜇𝑦 as well as the accuracy of the estimate, that is, 

𝜎𝜇𝑦
.

• Without previous knowledge of the process, we estimate naively 𝜎𝜇𝑦
by 

taking the standard deviation of 𝑦𝑡 divided by √𝑛.

• Would that be a good estimate ?
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EXAMPLE AR(1) PROCESS
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EXAMPLE MARKOV-SWITCHING PROCESS
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• Suppose you have a process:

𝑦𝑡| 𝑠𝑡 = 𝑘 ~ 𝑁(𝛼𝑘 , 1)

• 𝛼1 = −5 , 𝛼2= 5, and 𝑠𝑡 is a Discrete-state variable that evolves according to 
a first-order Markov chain with transition matrix 𝑷:

𝑷 =
𝑝 1 − 𝑝

1 − 𝑝 𝑝

• You want to estimate 𝜇𝑦 as well as the accuracy of the estimate 𝜎𝜇𝑦

• Without previous knowledge of the process, we estimate naively 𝜎𝜇𝑦
by taking 

the standard deviation of 𝑦𝑡 divided by √𝑛.

• Would that be a good estimate ?
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EXAMPLE MARKOV-SWITCHING PROCESS
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MCMC ESTIMATION OF VARIANCE MODELS
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• Some volatility models like Markov-switching GARCH model are better 
estimated using simulation—based Markov Chain Monte Carlo
techniques.

library(MSGARCH)

data(SMI)

spec <- CreateSpec(variance.spec = list(model = c("gjrGARCH","gjrGARCH")), 
distribution.spec = list(distribution = c("sstd","sstd")))

set.seed(1234)
fit <- FitMCMC(spec = spec,

data = SMI, 
ctr = list(nthin = 1, nburn = 5000, nmcmc = 10000))

http://keblu.github.io/MSGARCH/

http://keblu.github.io/MSGARCH/
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MCMC ESTIMATION OF VARIANCE MODELS
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head(round(fit$par, 4), 10)

• Using MCMC estimation, we have now generated multiple sample from 
the multivariate posterior distribution of the Markov-Switching GARCH 
model parameters.
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MCMC ESTIMATION OF VARIANCE MODELS
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plot(fit$par)



David Ardia

VALUE-AT-RISK ESTIMATION
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• Now we are interested in computing the Value-at-Risk a time 𝑇 + 1 (after the 
end of the training sample). This is useful for financial risk management.

• The Value-at-Risk at time 𝑇 + 1 is just a percentile of the 𝑇 + 1 predicted 
distribution of the returns given the information available at time 𝑇.

x <- seq(-5, 5,length.out = 1000)
i <- 1
density_pred <- PredPdf(spec,par = fit$par[i,],data = SMI, x = x)

VaR <- Risk(spec,par = fit$par[i,],
data = SMI,alpha = c(0.05,0.01),
nahead = 1,
do.es = FALSE)$VaR

plot(x = x, y = as.vector(density_pred), xlab = "return (%)", ylab = 
"density", type = "l")
abline(v = VaR[,1], col = "red")
abline(v = VaR[,2], col = "blue")
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VALUE-AT-RISK ESTIMATION
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𝑖 = 1

𝑖 = 300

𝑖 = 700
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par(mfrow = c(2,1))
risk <- rep(NA, nrow(fit$par))

for(i in 1:nrow(fit$par)){
risk[i] <- Risk(spec,par = fit$par[i,],

data = SMI,
alpha = 0.01,
nahead = 1,
do.es = FALSE)$VaR

}

plot(risk, type = "l")
abline(h = mean(risk), col = "red")
acf(risk)

VALUE-AT-RISK ESTIMATION

• We can thus get an estimate of the Value-at-Risk for each of the sampled 
parameters from the multivariate posterior distribution.

• We could compute the sample average get the mean Value-at-Risk. We could 
also compute it’s standard deviation to get the NSE, or the accuracy of that 
estimate.

• Would that be an adequate estimate ?
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VALUE-AT-RISK ESTIMATION
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ROBUST ESTIMATORS
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http://dx.doi.org/10.2139/ssrn.2741587 

https://dx.doi.org/10.2139/ssrn.2741587


David Ardia 18

https://CRAN.R-project.org/package=nse

https://cran.r-project.org/package=nse
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GEYER ESTIMATORS
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SPECTRAL DENSITY AT ZERO ESTIMATORS
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HAC TYPE ESTIMATORS
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BOOTSTRAP ESTIMATORS
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SIMULATION STUDY
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• AR(1) Case: 
• 1,000 simulation of length 100 and 1,000
• Two cases: 𝜌 = 0.9 and  𝜌 = 0.99
• Closed form solution for the true NSE for the mean is known

• MS Case:
• 1,000 simulations of length 100 and 1,000 
• Two cases: 𝑝 = 0.9 and 𝑝 = 0.99
• True NSE estimated by taking the standard deviation of the sample average

over 10,000 simulations

• Value-at-Risk Case:
• 1,000 estimations with MCMC chain of 100 or 1,000
• True NSE estimated by taking the standard deviation of the sample average 

Value-at-Risk (at the 5% level) over 10,000 estimations

• For each of the 33 estimators, we compute the RMSE and the bias.

SETUP
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RESULTS
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AR(1) RESULTS
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MARKOV-SWITCHING RESULTS
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VALUE AT RISK RESULTS
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THANKS ! QUESTIONS ?

Slides available at
http://keblu.github.io/MSGARCH/

http://keblu.github.io/MSGARCH/

